Model suggests that mammalian sperm cells have two modes of swimming – Phys.org


Forget Password?
Learn more
share this!
176
Twit
Share
Email
November 6, 2023
This article has been reviewed according to Science X’s editorial process and policies. Editors have highlighted the following attributes while ensuring the content’s credibility:
fact-checked
preprint
trusted source
proofread
by
A new mathematical model predicts that mammalian sperm cells have two distinct swimming modes. This prediction opens new questions about potential connections between sperm cells’ motor activity and their transitions to hyperactivation phases that may play an important role in fertilization. The finding is part of a larger effort to use math and fluid dynamics to describe how mammalian sperm move

The research is led by a team of engineers at the University of California San Diego, and the work is forthcoming in the journal Physical Review Fluids and a preprint is currently available on the arXiv server.
Mammalian sperm propel themselves by beating their flagella back and forth, thanks to chemically powered motors that drive waves along their flagella, which are threadlike appendages.
The researchers’ new model of a swimming sperm cell captures the interactions between its motor kinetics and changes in the shape (deformations) of the flagella as well as the movements of the head of the sperm cell. The model also accounts for the complex fluid mechanics around the sperm cell as it moves.

Video of a new mathematical model that predicts that mammalian sperm cells have two distinct swimming modes. This prediction opens new questions about potential connections between sperm cells’ motor activity and their transitions to hyperactivation phases that may play an important role in fertilization. The finding is part of a larger effort to use math and fluid dynamics to describe how mammalian sperm move. The research is led by a team of engineers at the University of California San Diego. The new work was published in the journal Physical Review Fluids on 15 November, 2023. Credit: UC San Diego / David Saintillan

This new model predicts that the swimming speed of a mammalian sperm cell does not simply increase as its chemical motors’ activity increases. Instead, as the motor activity of a swimming sperm cell increases, this motor activity passes a threshold level at which point a second, distinct swimming mode emerges. It is this second mode that could potentially be linked to sperm hyperactivation.
In swimming mode one, the head of the mammalian sperm cell swings back and forth more than it does in swimming mode two. In swimming mode two, the wave-shaped beating of the flagellum is stronger than it is in swimming mode one.
“While we can’t state for certain that this new model predicts the phenomenon of sperm hyperactivation that often occurs right before fertilization, it is certainly an interesting possibility. I hope further will clarify whether the motility transition seen in our model is indeed related to sperm hyperactivation,” said UC San Diego Professor David Saintillan, the corresponding author on the new paper and a fluid mechanics researcher in the Department of Mechanical and Aerospace Engineering at the UC San Diego Jacobs School of Engineering.

Model suggests that mammalian sperm cells have two modes of swimming
A new mathematical model predicts that mammalian sperm cells have two distinct swimming modes. This prediction opens new questions about potential connections between sperm cells’ motor activity and their transitions to hyperactivation phases that may play an important role in fertilization. The finding is part of a larger effort to use math and fluid dynamics to describe how mammalian sperm move. The research is led by a team of engineers at the University of California San Diego. Credit: UC San Diego / David Saintillan

“There is so much opportunity for engineers and mathematicians to contribute to our understanding of biology. More and more of the models we are working on in the field of , for example, are emerging as important tools for understanding the dynamics of biological systems like locomotion. In some cases, models allow us to test mechanisms or hypotheses that you can’t easily address experimentally. In these kinds of situations, models can be extremely useful,” said Saintillan.
The study of the mechanisms involved in mammalian sperm locomotion is an example of a problem where models have played a key role alongside experiments, Saintillan noted. “You can’t control the activity of the motors in live sperm cells with the turn of a dial, but with a model such as ours you can speed up or slow down the motor activity of and see how the locomotion changes.”

More information: Chenji Li et al, A chemomechanical model of sperm locomotion reveals two modes of swimming, Physical Review Fluids (2023). On arXiv: DOI: 10.48550/arxiv.2210.06343

Journal information: arXiv

Citation: Model suggests that mammalian sperm cells have two modes of swimming (2023, November 6) retrieved 7 November 2023 from https://phys.org/news/2023-11-mammalian-sperm-cells-modes.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More information: Chenji Li et al, A chemomechanical model of sperm locomotion reveals two modes of swimming, Physical Review Fluids (2023). On arXiv: DOI: 10.48550/arxiv.2210.06343

Journal information: arXiv

Journal information: arXiv
Provided by University of California – San Diego
Explore further
Facebook
Twitter
Email
Feedback to editors
4 hours ago
0
4 hours ago
0
4 hours ago
0
4 hours ago
0
Nov 6, 2023
0
10 minutes ago
50 minutes ago
1 hour ago
1 hour ago
2 hours ago
2 hours ago
2 hours ago
2 hours ago
2 hours ago
3 hours ago
6 hours ago
Nov 3, 2023
Nov 2, 2023
Oct 28, 2023
Oct 27, 2023
Oct 25, 2023
More from Other Physics Topics
Nov 1, 2023
Oct 24, 2023
Nov 1, 2021
Apr 5, 2019
Sep 22, 2022
Nov 15, 2022
Nov 6, 2023
Nov 6, 2023
Nov 3, 2023
Nov 1, 2023
Nov 1, 2023
Oct 31, 2023
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
We keep our content available to everyone. Consider supporting Science X’s mission by getting a premium account.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web

source

Originally posted 2023-11-07 18:30:56. Republished by Blog Post Promoter